
Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

Chapter 9
More Drawing

Put a quite here.
 - Author
12 pt helvetica italics 2 inch margin

In the last chapter we introduced some simple drawing commands and how to integrate them

into an object. Now we will look at two additional topics: initializing the states of objects that

are a sub-class of the View class and how to take a file of pure PostScript commands and

use that draw an object. Once we have these two topics under our belt we will be able to do

some really exciting programs.

Initializing Views: newFrame:

In chapter seven we learned how to initialize the state of our objects as they were

manufactured in the object factory. We added a new class method to our own object’s

implementation file and then sent a message to our super-class to re-use the new method

already created. But there is one difference between a off-screen object and an object that

will be displayed on the screen. When we create a new subclass of View, we often want to

tell the object where it should appear on the screen. That is why all subclasses of View

appear in a palette and many objects that are not subclasses of View appear as a generic

object in the lower left corner of Interface Builder when we instantiate them. The newFrame:

method is similar to the new method except that it lets you specify the size and location of the

view when it is created. So instead of using the new method for initializing instance variables

in Views we use the newFrame:: method. For example, suppose that we had a Gauge

object. To create a new Gauge object within our program we would add the following lines:

Page 9-1 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

id myGauge;

NXRect aRect; // check this

aRect.origin.x = 100.0;

aRect.origin.y = 200.0;

aRect.size.height = 300.0;

aRect.size.width = 400.0;

myGauge = [Gauge newFrame:&aRect];

This would create an new Gauge with its origin at the point (100.0, 200.0) that is 400 units

wide and 300 units high. The structure aRect is a C structure for grouping all the information

associated with a rectangle.

The argument to newFrame is a NXRect data structure which includes the height and width of

the object as well as the initial origin of the object. See Chapter 4-15 of the NeXT system

manual for a complete description of the NXRect data structure.

So if we need to initialize some variables that will be used to draw our objects we add the

following code to the implementation file (.m file):

+newFrame:(const NXRect *)tF {

self = [super newFrame:tF];

// add initialization code here

return self;

}

We can now understand an example program that will use this to initialize the internal state of

a object. The "drawLine" example in the Cookbook is a good example of this. In this

example we take the same program from the last section used to draw a line and add ten

sliders to control how the line is drawn. The newFrame: method for this example looks like

the following:

+newFrame:(const NXRect *)tF {

 self = [super newFrame:tF];

 originX = 50.0;

 originY = 100.0;

 scaleX = 1.0;

 scaleY = 1.0;

 backgroundGray = 1.0;

 lineGray = 0.0;

 lineWidth = 10.0;

 rotation = 0.0;

 destinationX = 400.0;

 destinationY = 500.0;

Page 9-2 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

 return self;

}

Wrapping PostScript Files

If you have ever taken a look at a file that was sent to a PostScript printer, you will find it does

not look line the drawing commands we have used in the last chapter. This is because we

are really using a C library to send PostScript commands to the NeXTstep PostScript display

server. This is an easy way to introduce PostScript drawing to beginners already familiar with

the C language. The real PostScript language is slightly different. The commands are the

same, but instead of putting the arguments after the command, PostScript puts the

arguments before the command. This is called pre-fix language. Other examples of prefix

command structures are H-P calculators and the Fourth language. The reason for this is that

argument passing can be done on a built in structure called a stack. Each line of the program

can assume that all the arguments are on the stack and when they are done they just leave

their results on the stack. This saves a lot of memory that must be reserved for temporary

storage and makes the language much easier to implement and much more efficient. The

only problem is that if you are not familiar with a pre-fix language it can be very hard to

program. The "implied stack" takes some getting used to. This didn’t bother people who

were building the original PostScript printers since they felt that most PostScript files would be

generated by computers and then processed by computers.

Learning PostScript: YAP

The best way to learn how to program with pure PostScript is to sit down at a NeXT and bring

up the YAP program. YAP stands for "Yet Another Previewer", a take off on the fact that

there is a program called YACC (Yet Another Compiler Compiler) and that there is already a

Preview program that is used with the NeXT system. YAP is useful because it combines the

editing features with a preview area so that we can see PostScript programs being created.

YAP is located in /NextDeveloper/Demos. To use it start it up and use the command to open

the PostScript example files or use the New command to create your own.

Page 9-3 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

Here are some samples to try:

Draw a simple line:

%!

newpath

 100 50 moveto

 300 200 lineto

stroke

showpage

Draw a circle with a light gray shade of gray:

%!

.333 setgray

newpath

 200 100 50 0 360 arc

 fill

showpage

Draw a curve 5 units wide to fit three points:

%!

5 setlinewidth

newpath

 100 100 moveto

 100 100 150 400 300 100 curveto

stroke

showpage

Try changing one or two numbers and then executing the command-E key. This will erase

the screen and redraw the display area using your changes. This gives you almost

instantaneous feedback on your drawing commands. It allows you to experiment and quickly

learn the PostScript language and its powerful features.

Creating a PSwrap file

After you have created some complex PostScript images you can now integrate them into

your programs by running a command called "pswrap". Suppose you just created a program

for drawing a circle such as in the second example above. You would now like to be able to

draw a circle from within your Objective C program by adding the line

drawCircle(radius, shade);

Page 9-4 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

This is done by using by using the following steps.

The following postscript definition for drawCircle takes the radius and shade of circle from the

stack;

/drawCircle

{

/radius exch def

/shade exch def

gsave

 currentpoint

newpath

radius 0 360 arc

shade setgray

 fill

grestore

} def

We would replace the lines in bold above by the lines in bold below.

defineps drawCircle(float radius, shade)

gsave

 currentpoint

newpath

radius 0 360 arc

shade setgray

 fill

grestore

endps

This file should then be saved into a file such as circle.psw. That file can then be added to

the project manager of Interface Builder.

Page 9-5 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

9-1_Proj_psw.344912.eps is missing.

Figure 9-1: Adding a PostScript wrap file to the Project Manager

After the Project Manager is selected from the Inspector Window, the Add... button is used

add the circle.psw file to the project manager. To define the types we would also need to

include the file "circle.h" in our implementation file. The following line must then be added to

all implementation files that use the drawCircle function:

#import "circle.h"

After the make command is run the following compile steps will be executed:

pswrap -a -h circle.h -o circle.c circle.psw

cc -O -g -Wimplicit -c circle.c -o obj/circle.o

The first line will create C program and header file from the our PostScript source. This is

similar to a pre-compiled version of PostScript. The second line will compile that C program

and put the binary in a directory where it will be linked into the main program.

The end result of the example program is that we can now draw a circle at the current point

Page 9-6 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

with any radius and shade with a single command. The following is an example of this:

#import "MyView.h"

#import <dpsclient/wraps.h>

#import <appkit/Control.h>

#import "line.h"

#import "circle.h"

@implementation MyView

- mySlider:sender

{

 myFloat = [sender floatValue];

 [self display];

 return self;

}

- drawSelf:(NXRect*)r :(int)c

{

NXEraseRect(&bounds);

PSmoveto(300.0, 200.0);

drawCircle(50.0, 0.333);

 PSsetgray(NX_BLACK);

PSsetlinewidth(5.0);

doLine(myFloat*1.3, myFloat);

return self;

}

This file is identical to the slider example in the used in the last chapter with the lines in bold

added to replace the PS functions. The following is also used to replace the line draw

function. It is the contents of the file line.psw.

defineps doLine(float x,y)

 5 setlinewidth

 newpath

 200 10 moveto

 x y lineto

 stroke

endps

The result is the following program in which the line moves over the circle as the slider is

moved.

Page 9-7 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

Figure 9-2:Result of Using PostScript Wrap Functions

Example 9-3: A simple Pie Chart

One of the advantages of using PostScript wraps is that there is a large library of PostScript

routines readily available for drawing standard objects. For example in the PostScript

Language Tutorial and Cookbook there is an example program that draws PieCharts. One of

the functions it uses is a routine called drawSlice:. In the original example the program took

the gray shade, the ending angle, the starting angle and the label off the stack. It also used

the radius which was an argument to another function called DrawPieChart. What we have

done is just changed the first few lines and the last line as in the example above for the

DrawCircle and created routine for drawing a slice of a PieChart. The contents of the file

slice.psw is listed below. This is a good example of the kind of programs professional

PostScript hackers can create. Not very legible by the average human but very useful, once

we know that our program just needs to add one line to their C program to use this.

Page 9-8 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

defineps drawSlice (float grayshade, radius, startangle,

endangle, labelps; char *thelabel)

 1 setlinewidth

 newpath 0 0 moveto

 0 0 radius startangle endangle arc

 closepath

 1.415 setmiterlimit

 gsave

 grayshade setgray

 fill

 grestore

 stroke

 gsave

 startangle endangle add 2 div rotate

 radius 0 translate

 newpath

 0 0 moveto labelps .8 mul 0 lineto stroke

 labelps 0 translate

 0 0 transform

 grestore

 itransform

 /y exch def /x exch def

 x y moveto

 x 0 lt

 { (thelabel) stringwidth pop neg 0 rmoveto }

 if

 y 0 lt { 0 labelps neg rmoveto } if

 (thelabel) show

endps

Page 9-9 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

Here is a sample application to demonstrate its functions. We will create a subclass of View

called PieView. It will have two action methods from a slider and a form object. The slider

we will use to control the value of the wedge (in degrees) and the Form will hold the text of

the label for the wedge. Me must make sure to change the default values of the slider to be 0

to 360.0. The header file will be the following:

#import <appkit/View.h>

#import <appkit/Slider.h>

@interface PieView:View

{

 id myText;

 float myFloat;

 char *myLabel;

}

+ newFrame:(const NXRect *)tF;

- setMyText:anObject;

- getSlider:sender;

- getLabel:sender;

@end

We can see we have one outlet (setMyText) and two action methods, one if the slider is

moved (getSlider) and one if the return character is entered after the label has been changed

(getlabel). We will use one outlet to get the name of the Form object which we will need to

display the string used in the label. The implementation file is listed below:

Page 9-10 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

#import "PieView.h"

#import <dpsclient/wraps.h>

#import <appkit/Control.h>

#import "slice.h"

@implementation PieView

+newFrame:(const NXRect *)tF

{

 self = [super newFrame:tF];

 [self translate:bounds.size.width/2.0

:bounds.size.height/2.0];

 myLabel = "";

 return self;

}

- getSlider:sender

{

 myFloat = [sender floatValue];

 [self display];

 return self;

}

- getLabel:sender

{

 myLabel = [myText stringValue];

 [self display];

 return self;

}

- drawSelf:(NXRect*)r :(int)c

{

 NXEraseRect(&bounds);

 PSselectfont("Helvetica", 16.0);

 // 50% gray, radius = 80 units, start a 0 degrees to myFloat

 // label length = 20 units, label text

 drawSlice(0.5, 80.0, 0.0, myFloat, 20.0, myLabel);

 return self;

}

@end

Page 9-11 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

When the application is running it has the following main window:

Figure 9-3: Program to Demonstrate the DrawSlice function

We will use these routines later on for our PieChart and DiskUse programs later in the text.

Example 9-4: Fractal Trees

Earlier in the text we discussed how visualization tools will help us "see" things that can not

be easily understood. One example of this is the use of recursion. We can read pages and

pages of detailed explanation but unless we can have a chance to manipulate a concrete

example many of the basic principals could elude our understanding.

In the PostScript Language Tutorial and Cookbook their is a nice example program called the

Fractal Arrow. There is a copy of this program in the file

/NextDeveloper/Examples/Postscript/Tree.ps. It has a hint of the beauty of the program by

the comment lines added.

Page 9-12 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

%!PS-Adobe-2.0

% From pg 74 of the "Blue Book"

% Change parameters for wild effects...

/depth 0 def

/maxdepth 10 def

/down {/depth depth 1 add def} def

/up {/depth depth 1 sub def} def

/doLine % Vertical line

{0 144 rlineto currentpoint stroke translate 0 0 moveto}

def

/fractArrow

{gsave 0.65 0.65 scale 10 setlinewidth

 down doLine

 depth maxdepth le

 {135 rotate fractArrow -270 rotate fractArrow}

 if

 up grestore}

def

% "Main" program

240 0 moveto 3 3 scale fractArrow 0.5 setgray stroke

This program will produce the following picture when viewed with Preview or YAP.

Figure 9-4: Fractal Arrow

Page 9-13 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

Although the fractal arrow is very nice, and it is a nice visual display or recursion it would be

much more fun to change various parameters and see what different patterns will be created.

The interactive nature of display PostScript and Interface Builder allows us to do this in a nice

easy manner. If you look closely at the fractArrow program, you will see it is recursive. In

the function definition for fractTree there are two calls to fractTree. From our computer

science fundamentals we might recall that all stack oriented languages are recursive in

nature. With PostScript and NeXTstep we can easily build small programs that allow us to

visualize what is going on.

The program is identical to the drawLine program used earlier but we will now use the ten

sliders to control some of the parameters such as the depth of recursion, the angle between

the rotated coordinate systems and the line characteristics. The header file will contain the

instance variables that are used to control the drawing. Their will be ten sliders each hooked

up to ten action methods for our object. Each action method will get the updated value from

the slider and then re-display the object.

#import <appkit/View.h>

@interface MyView:View

{

 float branchChange, branchLength, height, leftBranch,

lineWidth, moveLeft, moveRight, rightBranch, width,

widthChange, maxDepth;

}

+ newFrame:(const NXRect *)tF;

- branchChange:sender;

- widthChange:sender;

- moveLeft:sender;

- height:sender;

- branchLength:sender;

- rightBranch:sender;

- leftBranch:sender;

- lineWidth:sender;

- moveRight:sender;

- width:sender;

@end

Page 9-14 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

We will need to initialize all of our drawing parameters. The newFrame: function below has

some samples although you might want to use some of your own defaults.

+newFrame:(const NXRect *)tF {

 self = [super newFrame:tF];

 branchChange = .7;

 widthChange = .7;

 moveLeft = 0.0;

 height = 1.0;

 branchLength = 200.0;

 rightBranch = 50.0;

 leftBranch = -30.0;

 lineWidth = 40.0;

 moveRight = 200.0;

 width = .8;

 maxDepth = 9.0;

 moveLeft = 6.0;

}

The drawing program, like the PieSlice program are very simple. This one just passes the

parameters off to a routine called doTree which has the same changes as the drawSlice

program.

- drawSelf:(NXRect*)r :(int)c

{

 NXEraseRect(&bounds);

 PSsetgray(NX_BLACK);

 PSsetlinewidth(lineWidth);

 doTree(moveLeft, leftBranch, rightBranch, branchLength,

moveRight, width, height, lineWidth, branchChange,

widthChange);

 return self;

}

The results speak for themselves. Here are a few samples generated by various

combinations of the ten parameters. There are almost an infinite number of them. This is

one part that is very hard to put in a text because it does not show the interactive nature of

the program at all.

Page 9-15 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

Figure 9-5: Fractal Tree

Figure 9-6: Changing parameters to the Fractal Tree

Page 9-16 Sun Jun 20 1993 16:11:01 EDT

Object Based Computing: A NeXTstep Tutorial and Cookbook - Version 1.5 - DGM

Chapter 9: More Drawing

Using non-retained windows

When we build the fractTree program we will be able to generate some complex graphics.

Each additional level of recursion we use doubles the number of lines to be drawn. If we use

15 levels deep that is 2*152-1= 449 paths that must be drawn. By default each of the

windows is buffered. All the drawing is done in an off-screen area of memory and only after

the drawing is finished will we see the results compiled to the screen. This can be a bit

annoying when we want to watch graphics being drawn. To get around this we must select

the window in Interface Builder and change the backing type to be non-retained. This allows

us to see the fractel programs as they are being drawn on the screen.

You might also be interested in how you can move these graphics into your other programs

such as word processors and drawing programs. We will cover that in the section that covers

the pasteboard.

Page 9-17 Sun Jun 20 1993 16:11:01 EDT

